skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arif Khan, Krzysztof Choromanski"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the problem of sharing data that pertains to individuals with anonymity guarantees, where each user requires a desired level of privacy. We propose the first shared-memory as well as distributed memory parallel algorithms for the k-anonimity problem that achieves this goal, and produces high quality anonymized datasets. The new algorithm is based on an optimization procedure that iteratively computes weights on the edges of a dissimilarity matrix, and at each iteration computes a minimum weighted b-edgecover in the graph. We describe how a 2-approximation algorithm for computing the b-edgecover can be used to solve the adaptive anonymity problem in parallel. We are able to solve adaptive anonymity problems with hundreds of thousands of instances and hundreds of features on a supercomputer in under five minutes. Our algorithm scales up to 8000 cores on a distributed memory supercomputer, while also providing good speedups on shared memory multiprocessors. On smaller problems where an a Belief Propagation algorithm is feasible, our algorithm is two orders of magnitude faster. 
    more » « less